Categorification and Heisenberg doubles arising from towers of algebras
نویسندگان
چکیده
The Grothendieck groups of the categories of finitely generated modules and finitely generated projective modules over a tower of algebras can be endowed with (co)algebra structures that, in many cases of interest, give rise to a dual pair of Hopf algebras. Moreover, given a dual pair of Hopf algebras, one can construct an algebra called the Heisenberg double, which is a generalization of the classical Heisenberg algebra. The aim of this paper is to study Heisenberg doubles arising from towers of algebras in this manner. First, we develop the basic representation theory of such Heisenberg doubles and show that if induction and restriction satisfy Mackey-like isomorphisms then the Fock space representation of the Heisenberg double has a natural categorification. This unifies the existing categorifications of the polynomial representation of the Weyl algebra and the Fock space representation of the Heisenberg algebra. Second, we develop in detail the theory applied to the tower of 0-Hecke agebras, obtaining new Heisenberg-like algebras that we call quasi-Heisenberg algebras. As an application of a generalized Stone–von Neumann Theorem, we give a new proof of the fact that the ring of quasisymmetric functions is free over the ring of symmetric functions.
منابع مشابه
Categorification and Groupoidification of the Heisenberg Algebra
These lectures, prepared for Higher Structures in China III, held in Changchun, Aug 2012, describe a relationship between two forms of categorification of algebras by giving a combinatorial model for Khovanov’s categorification of the Heisenberg algebra in a 2-category of spans of groupoids. This is joint work with Jamie Vicary. The goal here is to describe two notions of “categorifying an alge...
متن کاملOn the partial categorification of some Hopf algebras using the representation theory of towers of J -trivial monoids and semilattices
This paper considers the representation theory of towers of algebras of J -trivial monoids. Using a very general lemma on induction, we derive a combinatorial description of the algebra and coalgebra structure on the Grothendieck rings G0 and K0. We then apply our theory to some examples. We first retrieve the classical Krob-Thibon’s categorification of the pair of Hopf algebras QSym/NCSF as re...
متن کاملA Survey of Heisenberg Categorification via Graphical Calculus
In this expository paper we present an overview of various graphical categorifications of the Heisenberg algebra and its Fock space representation. We begin with a discussion of “weak” categorifications via modules for Hecke algebras and “geometrizations” in terms of the cohomology of the Hilbert scheme of points on the resolution of a simple singularity. We then turn our attention to more rece...
متن کاملCLUSTER ALGEBRAS AND CLUSTER CATEGORIES
These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...
متن کاملar X iv : 0 90 3 . 13 81 v 1 [ m at h . C O ] 8 M ar 2 00 9 COMBINATORIAL HOPF ALGEBRAS AND TOWERS OF ALGEBRAS – DIMENSION , QUANTIZATION , AND FUNCTORIALITY
Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras L n≥0 An can be endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap, and independently Lam and Shimozono constructed dual graded graphs from primitive elements in Hopf algebras. In this paper we apply the composition of these constructions to towers of al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 129 شماره
صفحات -
تاریخ انتشار 2015